Polonium hydride (also known as polonium dihydride, hydrogen polonide, or polane) is a chemical compound with the formula PoloniumHydrogen2. It is a liquid at room temperature, the second hydrogen chalcogenide with this property after water. It is very unstable chemically and tends to decompose into elemental polonium and hydrogen. It is a volatile and very lability compound, from which many can be derived. Additionally, it is radioactive.
Trace quantities of polonium hydride may be prepared by reacting hydrochloric acid with polonium-plated magnesium foil. In addition, the diffusion of trace quantities of polonium in palladium or platinum that is saturated with hydrogen (see palladium hydride) may be due to the formation and migration of polonium hydride.
It should have properties similar to that of hydrogen selenide and hydrogen telluride, other borderline hydrides. It is expected to be an endothermic compound, like the lighter hydrogen telluride and hydrogen selenide, and therefore would decompose into its constituent elements, releasing heat in the process. The amount of heat given off in the decomposition of polonium hydride is over 100 kJ/mol, the largest of all the hydrogen .
It is predicted that, like the other hydrogen chalcogenides, polonium may form two types of salts: polonide (containing the Po2− anion) and one from polonium hydride (containing –PoH, which would be the polonium analogue of thiol, selenol and tellurol). However, no salts from polonium hydride are known. An example of a polonide is lead polonide (PbPo), which occurs naturally as lead is formed in the alpha decay of polonium.
Polonium hydride is difficult to work with due to the extreme radioactivity of polonium and its compounds and has only been prepared in very dilute tracer quantities. As a result, its physical properties are not definitely known. It is also unknown if polonium hydride forms an solution in water like its lighter homologues, or if it behaves more like a metal hydride (see also hydrogen astatide).
|
|